Active Vibration Suppression of a Nonlinear Flexible Spacecraft

author

Abstract:

In this article, the issue of attitude control and active vibration suppression of a nonlinear flexible spacecraft is assessed through piezoelectric patches as actuator and sensors. Two controller loops are applied: the inner loop, to make the panel vibration damped through piezoelectric patches; and the outer loop, to perform spacecraft maneuver using the reaction wheel acting on the hub. An optimal controller is designed in the inner loop and two robust controllers are designed as the outer loop, which are used interchangeably. One is a high-ordersliding mode controller using super twisting algorithm and the other is a nonsingular terminal sliding mode controller. With respect to the non-minimum phase properties of the system, if the panel deflection is defined as the output, the output redefinition approach is introduced.The performances of the proposed controllers are compared in terms of tracking attitude trajectory, panel vibration suppression, robustness towards uncertainties, sensor noise, disturbances and nonlinearity in large maneuvers.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Output Stabilization of Flexible Spacecraft with Active Vibration Suppression

A desired characteristic of future spacecraft and space structures is the possibility of reducing the costs inherent with their transport in the space. Hence, it is necessary to decrease their weight; the main drawback consists of the decreased rigidity of the structure. Therefore, the elimination of vibrations becomes an important issue in spacecraft maneuvers. Another issue, related to the pr...

full text

Active vibration suppression of a flexible link

The active vibration suppression of a single flexible link manipulator using a piezoelectric actuator is investigated. For this purpose, a finite element (FE) model is developed for the modal and transient analysis of a cantilever beam and a flexible link manipulator. A proportional control strategy is employed in a FE model to adjust the voltage applied to the piezoelectric actuator so as to c...

full text

Vibration Suppression of Flexible Spacecraft During Attitude Maneuvers

ENGINEERING NOTES are short manuscripts describing new developments or important results of a preliminary nature. These Notes cannot exceed 6 manuscript pages and 3 figures; a page of text may be substituted for a figure and vice versa. After informal review by the editors, they may be published within a few months of the date of receipt. Style requirements are the same as for regular contribut...

full text

Feed-forward/feedback Control for Active Vibration Suppression of Flexible Spacecraft during Attitude Maneuver

This paper presents an investigation into development of feed-forward and feedback control strategies for active vibration suppression and attitude control of flexible spacecrafts. The feed-forward loop consists of a computed-torque scheme and a command shaping technique based on component synthesis vibration suppression (CSVS) method which was developed based on linear systems theory. For rela...

full text

Design of Nonlinear Robust Controller and Observer for Control of a Flexible Spacecraft

Two robust nonlinear controllers along with a nonlinear observer have been developed in this study to control a 1D nonlinear flexible spacecraft. The first controller is based on dynamic inversion, while the second one is composed of dynamic inversion and µ-synthesis controllers. The extension of dynamic inversion approach to flexible spacecraft is impeded by the non-minimum phase characteristi...

full text

Flexible Spacecraft Vibration Suppression Using Pwpf Modulated Input Component Command and Sliding Mode Control

This paper presents a dual-stage control system design method for the rotational maneuver and vibration stabilization of a spacecraft with flexible appendages. In this design approach, attitude control system and vibration suppression were designed separately using lower order model. The design of attitude controller was based on sliding mode control (SMC) theory leading to a discontinuous cont...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 11  issue 1

pages  -

publication date 2638-04-21

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023